题目内容
设函数f(x)=ax2+bx+c(a>0),且f(1)=-
.
(1)求证:函数f(x)有两个零点;
(2)设x1,x2是函数f(x)的两个零点,求x1-x2的范围;
(3)求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.
| a |
| 2 |
(1)求证:函数f(x)有两个零点;
(2)设x1,x2是函数f(x)的两个零点,求x1-x2的范围;
(3)求证:函数f(x)的零点x1,x2至少有一个在区间(0,2)内.
考点:一元二次方程的根的分布与系数的关系,函数零点的判定定理
专题:函数的性质及应用
分析:(1)由条件化简函数的解析式,求出函数的判别式,由判别式大于0恒成立得到函数f(x)有两个零点.
(2)设x1,x2是函数f(x)的两个零点,则x1,x2是方程f(x)=0的两根,可求x1+x2及x1•x2的值,将|x1-x2|变形,用x1+x2及x1•x2的值表示,配方求出最小值,由题意知,式子无最大值.
(3)分c>0时和c≤0两种情况,判断函数值在区间端点处的函数值的符号,根据函数零点的判定定理得出结论.
(2)设x1,x2是函数f(x)的两个零点,则x1,x2是方程f(x)=0的两根,可求x1+x2及x1•x2的值,将|x1-x2|变形,用x1+x2及x1•x2的值表示,配方求出最小值,由题意知,式子无最大值.
(3)分c>0时和c≤0两种情况,判断函数值在区间端点处的函数值的符号,根据函数零点的判定定理得出结论.
解答:
解:(1)证明:∵f(1)=a+b+c=-
,∴3a+2b+2c=0,
∴c=-
a-b.
∴f(x)=ax2+bx-
a-b,
△=b2-4a(-
a-b)=b2+6a2+4ab=(2a+b)2+2a2,
∵a>0,∴△>0恒成立,故函数f(x)有两个零点.
(2)若x1,x2是函数f(x)的两个零点,则x1,x2是方程f(x)=0的两根.
∴x1+x2=-
,x1x2=-
-
.
∴(x1-x2)2=(x1+x2)2-4x1x2=(-
)2-4(-
-
)=(
+2)2+2≥2.
故x1-x2的范围是(-∞,-
]∪[
,+∞).
(3)根据f(0)=c,f(2)=4a+2b+c,由(I)知3a+2b+2c=0,∴f(2)=a-c.
(i)当c>0时,有f(0)>0,又∵a>0,
∴f(1)=-
<0,故函数f(x)在区间(0,1)内有一个零点,
故在区间(0,2)内至少有一个零点.
(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a-c>0,
∴函数f(x)在区间(1,2)内有一零点,
综合(i)(ii),可知函数f(x)在区间(0,2)内至少有一个零点.
| a |
| 2 |
∴c=-
| 3 |
| 2 |
∴f(x)=ax2+bx-
| 3 |
| 2 |
△=b2-4a(-
| 3 |
| 2 |
∵a>0,∴△>0恒成立,故函数f(x)有两个零点.
(2)若x1,x2是函数f(x)的两个零点,则x1,x2是方程f(x)=0的两根.
∴x1+x2=-
| b |
| a |
| b |
| a |
| 3 |
| 2 |
∴(x1-x2)2=(x1+x2)2-4x1x2=(-
| b |
| a |
| b |
| a |
| 3 |
| 2 |
| b |
| a |
故x1-x2的范围是(-∞,-
| 2 |
| 2 |
(3)根据f(0)=c,f(2)=4a+2b+c,由(I)知3a+2b+2c=0,∴f(2)=a-c.
(i)当c>0时,有f(0)>0,又∵a>0,
∴f(1)=-
| a |
| 2 |
故在区间(0,2)内至少有一个零点.
(ii)当c≤0时,f(1)<0,f(0)=c≤0,f(2)=a-c>0,
∴函数f(x)在区间(1,2)内有一零点,
综合(i)(ii),可知函数f(x)在区间(0,2)内至少有一个零点.
点评:本题考查函数的零点与方程根的关系,函数的零点就是函数f(x)=0的根;零点的判定方法是,函数在区间
端点的函数值异号,属于中档题.
端点的函数值异号,属于中档题.
练习册系列答案
相关题目
曲线y=e-2x+1在点(0,2)处的切线方程为( )
| A、x-y+2=0 |
| B、x+y-2=0 |
| C、2x-y+2=0 |
| D、2x+y-2=0 |
复数1+
在复平面上对应的点的在( )
| 1 |
| i |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |