题目内容
若直线l过点A(-5,0),B(3,-3),则直线l的纵截距为 .
考点:直线的两点式方程
专题:直线与圆
分析:由已知条件,用两点式方程先求出直线l的方程,再令x=0,求出y的值,从而得到纵截距.
解答:
解:∵直线l过点A(-5,0),B(3,-3),
∴直线l的方程为:
=
,
整理,得3x+8y+15=0,
令x=0,得到直线l的纵截距为:y=-
.
故答案为:-
.
∴直线l的方程为:
| y-0 |
| x+5 |
| -3-0 |
| 3+5 |
整理,得3x+8y+15=0,
令x=0,得到直线l的纵截距为:y=-
| 15 |
| 8 |
故答案为:-
| 15 |
| 8 |
点评:本题考查直线的纵截距的求法,是基础题,解题时要注意两点式方程的合理运用.
练习册系列答案
相关题目
若关于x的不等式ax2+2ax-4≥2x2+4x的解集为空集,则实数a的取值范围是( )
| A、(-2,2) |
| B、(-∞,2] |
| C、(-2,2] |
| D、(-∞,-2)∪(2,+∞) |