题目内容

设x,y满足不等式组
x≥0
x+3y≥4
3x+y≤4
则目标函数z=2x+y的最小值是(  )
A、
3
2
B、4
C、
4
3
D、
3
4
考点:简单线性规划
专题:数形结合
分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.
解答: 解:画出满足条件
x≥0
x+3y≥4
3x+y≤4
的平面区域,
如图示:

而z=2x+y可化为:y=-2x+z,
显然y=-2x+z过(0,
4
3
)时,z最小为
4
3

故选:C.
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网