题目内容

如图,CB是⊙O的直径,AP是⊙O的切线,P为切点,AP与CB的延长线交于点P,若AP=8,PB=4,求AC的长度.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:根据切割线定理,得PA2=PB×PC,结合PA=8、PB=4得PC=16=2PA.由△PAB∽△PCA,得AC=2AB,最后在Rt△ABC中利用勾股定理,算出AB=
12
5
5
,从而得到AC的长度.
解答: 解:∵AP是⊙O的切线,A为切点,∴PA2=PB×PC
∵PA=8,PB=4,∴PC=16,得PC=2PA
∵∠PAB=∠PCA,∠P是公共角
∴△PAB∽△PCA,得
AB
AC
=
PA
PC
=
1
2
,即AC=2AB
∵Rt△ABC中,BC=PC-PB=12
∴AC2+AB2=BC2,即5AB2=144,得AB=
12
5
5

∴AC=2AB=
24
5
5
点评:本题以圆中的比例线段为例,考查了切割线定理和相似三角形等知识点,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网