题目内容
用秦九韶算法计算多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,V2的值为( )
| A、-845 | B、220 |
| C、-57 | D、34 |
考点:秦九韶算法
专题:算法和程序框图
分析:首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V2的值.
解答:
解:∵f(x)=3x6+5x5+6x4+79x3-8x2+35x+12
=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
∴V2的值为34;
故选:D.
=12+35x-8x2+79x3+6x4+5x5+3x6
=((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
∴V2的值为34;
故选:D.
点评:本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.
练习册系列答案
相关题目
已知等比数列{an}的前三项为1,2,4,则a6=( )
| A、8 | B、32 | C、16 | D、64 |