题目内容
6.设集合A={x|x(5-x)>4},B={x|x≤a},若A∪B=B,则a的值可以是( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由已知得A⊆B,由此能求出实数a的取值范围,可得结论.
解答 解:集合A={x|x(5-x)>4}={x|1<x<4},
∵A∪B=B,
∴A⊆B,
∵B={x|x≤a},∴a≥4.
∴a的值可以是4,
故选D.
点评 本题考查实数的取值范围的求法,是基础题,解题时要注意并集的性质的合理运用.
练习册系列答案
相关题目
16.某商家在网上销售一种商品,从该商家的销售数据中抽取6天的价格与销量的对应数据,如下表所示:
(Ⅰ)由表中数据,看出可用线性回归模型拟合y与x的关系,试求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并预测当价格为1000元时,每天的商品的销量为多少;
(Ⅱ)若以从这6天中随机抽取2天,至少有1天的价格高于700元的概率.
参考数据:$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 价格x(百元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 销量y(件/天) | 90 | 84 | 83 | 80 | 75 | 68 |
(Ⅱ)若以从这6天中随机抽取2天,至少有1天的价格高于700元的概率.
参考数据:$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$.
17.某市对大学生毕业后自主创业人员给予小额贷款补贴,贷款期限分为6个月、12个月、18个月、24个月、36个月五种,对于这五种期限的贷款政府分别补贴200元、300元、300元、400元、400元,从2016年享受此项政策的自主创业人员中抽取了100人进行调查统计,选取贷款期限的频数如表:
(Ⅰ)若小王准备申请此项贷款,求其获得政府补贴不超过300元的概率(以上表中各项贷款期限的频率作为2017年自主创业人员选择各种贷款期限的概率);
(Ⅱ)若小王和小李同时申请此项贷款,求两人所获得政府补贴之和不超过600元的概率.
| 贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
| 频数 | 20 | 40 | 20 | 10 | 10 |
(Ⅱ)若小王和小李同时申请此项贷款,求两人所获得政府补贴之和不超过600元的概率.
14.
如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1∉平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是( )
| A. | 与平面A1DE垂直的直线必与直线BM垂直 | |
| B. | 异面直线BM与A1E所成角是定值 | |
| C. | 一定存在某个位置,使DE⊥MO | |
| D. | 三棱锥A1-ADE外接球半径与棱AD的长之比为定值 |
1.已知集合A={y|0≤y<2,y∈N},B={x|x2-4x-5≤0,x∈N},则A∩B=( )
| A. | {1} | B. | {0,1} | C. | [0,2) | D. | ∅ |
18.
十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,?=0.02,则输出的结果为( )
| A. | 3 | B. | 2.5 | C. | 2.45 | D. | 2.4495 |
16.
如图,点M在曲线y=$\sqrt{x}$,若由曲线y=$\sqrt{x}$与直线OM所围成的阴影部分的面积为$\frac{1}{6}$,则实数a等于( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |