题目内容

12.在区间[-3,3]上随机取一个数x,使得|x+1|-|x-2|≥1成立的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-3,3]的长度求比值即得.

解答 解:利用几何概型,其测度为线段的长度.
由不等式|x+1|-|x-2|≥1 可得 ①$\left\{\begin{array}{l}{x<-1}\\{(-x-1)-(2-x)≥1}\end{array}\right.$,或②$\left\{\begin{array}{l}{-1≤x<2}\\{(x+1)-(2-x)≥1}\end{array}\right.$,
③$\left\{\begin{array}{l}{x≥2}\\{(x+1)-(x-2)≥1}\end{array}\right.$.
解①可得x∈∅,解②可得1≤x<2,解③可得 x≥2.
故原不等式的解集为{x|x≥1},
∴在区间[-3,3]上随机取一个数x使得|x+1|-|x-2|≥1的概率为P=$\frac{3-1}{3-(-3)}$=$\frac{1}{3}$.
故选:B.

点评 本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网