题目内容
13.设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径r=$\frac{2S}{a+b+c}$,这是平面几何中的一个命题,其证明采用“面积法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.则r=$\frac{2S}{a+b+c}$.(1)将此结论类比到空间四面体:设四面体S-ABC的四个面的面积分别为S1,S2,S3,S4.体积为V,猜想四面体的内切球半径(用S1,S2,S3,S4,V,表示).
(2)用综合法证明上述结论.
分析 (1)根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可,
(2)类似△ABC的内切圆半径r=$\frac{2S}{a+b+c}$的即可证明.
解答 解:(1)设四面体的内切球的球心为O,![]()
则球心O到四个面的距离都是R,
∴四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为V=$\frac{1}{3}$(S1+S2+S3+S4)r,
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$,
(2)证明:VS-ABC=VO-ABC+VO-SAB+VO-SBC+VO-SAC=$\frac{r}{3}$(S△ABC+S△SAB+V△SBC+VO△SAC),
∴r=$\frac{3V}{{S}_{1}+{S}_{2}+{S}_{3}+{S}_{4}}$
点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
练习册系列答案
相关题目
3.命题“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是( )
| A. | ?x>0,总有(x+1)ex≤1 | B. | ?x≤0,总有(x+1)ex≤1 | ||
| C. | ?x0≤0,总有(x0+1)${e}^{{x}_{0}}$≤1 | D. | ?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1 |
4.已知a,b,c分别为△ABC的内角A,B,C所对的边,且3a2+3b2-c2=4ab,则△ABC( )
| A. | 可能为锐角三角形 | B. | 一定不是锐角三角形 | ||
| C. | 一定为钝角三角形 | D. | 不可能为钝角三角形 |
1.在等差数列{an}中,若其前13项的和S13=52,则a7为( )
| A. | 4 | B. | 3 | C. | 6 | D. | 12 |
8.A、B分别是复数z1、z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是( )
| A. | 等腰三角形 | B. | 直角三角形 | C. | 等边三角形 | D. | 等腰直角三角形 |
19.为了考查某种药物预防H7N9禽流感的效果,某研究中心选了100只鸡做实验,统计如下
(Ⅰ)能有多大的把握认为药物有效
(Ⅱ)在服药后得禽流感的鸡中,有2只母鸡,3只公鸡,在这5只鸡中随机抽取3只再进行研究,求至少抽到1只母鸡的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表
| 得禽流感 | 不得禽流感 | 总计 | |
| 服药 | 5 | 45 | 50 |
| 不服药 | 14 | 36 | 50 |
| 总计 | 19 | 81 | 100 |
(Ⅱ)在服药后得禽流感的鸡中,有2只母鸡,3只公鸡,在这5只鸡中随机抽取3只再进行研究,求至少抽到1只母鸡的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
临界值表
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
20.已知集合M={x|x2-4<0},N={x|1≤2x≤8,x∈Z},则N∩M=( )
| A. | [0,2) | B. | {0,1} | C. | {0,1,2} | D. | {0,1,3} |