题目内容
锐角△ABC中,
+
=6cosC,则
+
=______.
| b |
| a |
| a |
| b |
| tanC |
| tanA |
| tanC |
| tanB |
∵
+
=
=6cosC,
由余弦定理得:a2+b2-2abcosC=c2,
∴4ab•cosC=c2,
则原式=tanC•
=tanC•
=
,
由正弦定理得:
=
,
∴上式=
=
=4.
故答案为:4
| b |
| a |
| a |
| b |
| a2+b2 |
| ab |
由余弦定理得:a2+b2-2abcosC=c2,
∴4ab•cosC=c2,
则原式=tanC•
| sinBcosA+sinAcosB |
| sinAsinB |
| sin(A+B) |
| sinAsinB |
| sin2C |
| sinAsinBcosC |
由正弦定理得:
| sin2C |
| sinAsinB |
| c2 |
| ab |
∴上式=
| c2 |
| abcosC |
| 4abcosC |
| abcosC |
故答案为:4
练习册系列答案
相关题目