题目内容
直线l被两直线l1:2x+y-8=0和l2:x-3y+10=0截得线段中点是M(0,1),求l方程.
考点:待定系数法求直线方程
专题:
分析:设出直线l1上的动点B的坐标,由中点坐标公式求出A的坐标,代入直线l2的方程求得a的值;
解答:
解:∵点B在直线l1:2x+y-8=0上,可设B(a,8-2a),
又P(0,1)是AB的中点,
∴A(-a,2a-6),
∵点A在直线l2:x-3y+10=0上,
∴-a-3(2a-6)+10=0,
解得a=4,即B(4,0).
故直线l的方程是x+4y-4=0.
又P(0,1)是AB的中点,
∴A(-a,2a-6),
∵点A在直线l2:x-3y+10=0上,
∴-a-3(2a-6)+10=0,
解得a=4,即B(4,0).
故直线l的方程是x+4y-4=0.
点评:本题考查了代入法求直线的方程,考查直线的交点问题,比较基础.
练习册系列答案
相关题目
已知命题p:m,n为直线,α为平面,若m∥n,n?α,则m∥α;命题q:若a>b,则ac>bc,则下列命题为真命题的是( )
| A、p或q | B、非p或q |
| C、非p且q | D、p且q |
不等式-x2+5x-6≤0的解集为( )
| A、{x|x≤-6或x≥1} |
| B、{x|-6≤x≤1} |
| C、{x|x≤2或x≥3} |
| D、{x|2≤x≤3} |
(x-
)8的二项展开式中,x2的系数是( )
| 1 | ||
|
| A、70 | B、-70 |
| C、28 | D、-28 |