题目内容
已知f(x)是R上的奇函数且是减函数,若x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值( )
| A、一定大于零 | B、一定小于零 |
| C、为零 | D、正负都有可能 |
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:对题设中的条件进行变化,利用函数的性质得到不等式关系,再由不等式的运算性质整理变形成结果,与四个选项比对即可得出正确选项.
解答:
解:∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3,x3>-x1,
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴三式相加整理得f(x1)+f(x2)+f(x3)<0
故选:B
∴x1>-x2,x2>-x3,x3>-x1,
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴三式相加整理得f(x1)+f(x2)+f(x3)<0
故选:B
点评:本题考查奇偶性与单调性的综合,解题的关键是根据函数的性质得到f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,再由不等式的性质即可得到结论.
练习册系列答案
相关题目
已知p1(2,-1),p2(0,5)且点p在p1p2的延长线上,|p1p|=2|pp2|,则p的坐标( )
| A、(2,-7) | ||
B、(
| ||
C、(
| ||
| D、(-2,11) |
已知|
|=3
,|
|=6,且
+
与
垂直,则
与
的夹角是( )
| a |
| 2 |
| b |
| a |
| b |
| a |
| a |
| b |
| A、30° | B、90° |
| C、45° | D、135° |
下列计算:①(-2014)0=1;②2m-4=
;③x4+x3=x7;④(ab2)3=a3b6;⑤
=35,正确的是( )
| 1 |
| 2m4 |
| (-35)2 |
| A、① | B、①②③ |
| C、①③④ | D、①④⑤ |