题目内容

地面上有两个同心圆(如图),其半径分别为1,2.若向图中最大的圆内投点且投到图中阴影区域的概率为
5
8
,则两直线所夹锐角的弧度数为多少?
考点:几何概型
专题:概率与统计
分析:本题考查的知识点是几何概型的意义,关键是要找出:“两直线所夹锐角”对应图形的面积,及整个图形的面积,然后再结合几何概型的计算公式进行求解
解答: 解:设两直线所夹锐角弧度为α,地面上有两个同心圆(如图),其半径分别为1,2
则有:S阴影=
α
π
×π×12+
π-α
π
×3π=α+3π-3α=3π-2α,
5
8
=
3π-2α

解得:α=
π
4

故答案为:
π
4
点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据公式求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网