题目内容

9.(重点中学做)设实数x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+3y-6≥0}\\{y-2≤0}\end{array}\right.$,则 z=x2+y2的取值范围是(  )
A.[2,2$\sqrt{5}$]B.[10,20]C.[4,20]D.[$\frac{18}{5}$,20]

分析 由约束条件作出平面区域,数形结合得到最优解,联立方程组求出最优解的坐标,由z=x2+y2的几何意义得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+3y-6≥0}\\{y-2≤0}\end{array}\right.$作出可行域如图,
由图可知,可行域内的点到原点距离的最小值为d=$\frac{|-6|}{\sqrt{{1}^{2}+{3}^{2}}}=\frac{6\sqrt{10}}{10}=\frac{3\sqrt{10}}{5}$,
联立$\left\{\begin{array}{l}{y=2}\\{x-y-2=0}\end{array}\right.$,得A(4,2),
|OA|=$\sqrt{{4}^{2}+{2}^{2}}=2\sqrt{5}$,
∴z=x2+y2的取值范围是:[$\frac{18}{5},20$].
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网