题目内容

18.为了了解某校学生喜欢吃辣是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
喜欢吃辣不喜欢吃辣合计
男生401050
女生203050
合计6040100
(1)请将上面的列表补充完整;
(2)是否有99.9%以上的把握认为喜欢吃辣与性别有关?说明理由:
下面的临界值表供参考:
p(K2≥k)0.100.050.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n•{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

分析 (1)根据在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$,求出喜欢吃辣的有$\frac{3}{5}×100=60$,可得2×2列联表;
(2)求出k2,与是临界值比较,即可得出是否有99.9%以上的把握认为喜欢吃辣与性别有关

解答 解:(1)∵在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为$\frac{3}{5}$.
∴在100人中,喜欢吃辣的有$\frac{3}{5}×100=60$…(2分)
∴男生喜欢吃辣的有60-20=40,
列表补充如下:

喜欢吃辣不喜欢吃辣合计
男生401050
女生203050
合计6040100
…(6分)
(2)∵${K^2}=\frac{{100×{{({40×30-20×10})}^2}}}{50×50×60×40}=\frac{50}{3}≈16.667>10.828$…(10分)
∴有99.9%以上的把握认为喜欢吃辣与性别有关…(12分)

点评 本题考查独立性检验的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网