题目内容
10.已知集合A={x|x≥3或x≤1},B={x|2<x<4},则(∁RA)∩B=( )| A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
分析 根据补集和交集的定义,写出运算结果即可.
解答 解:∵集合A={x|x≥3或x≤1},
∴∁RA={x|1<x<3},
又B={x|2<x<4},
∴(∁RA)∩B={x|2<x<3}=(2,3).
故选:C.
点评 本题考查了补集和交集的定义与运算问题,是基础题目.
练习册系列答案
相关题目
20.设集合A={1,2,3,4},则集合A的真子集的个数为( )
| A. | 16 | B. | 15 | C. | 14 | D. | 13 |
1.已知某随机变量X的概率密度函数为$P(x)=\left\{\begin{array}{l}0,x≠0\\{e^{-x}},x>0\end{array}\right.$,则随机变量X落在区间(1,3)内的概率为( )
| A. | $\frac{e+1}{e^2}$ | B. | $\frac{{{e^2}-1}}{e^3}$ | C. | e2-e | D. | e2+e |
18.设$a=(\frac{7}{9})^{5}$,$b=(\frac{9}{7})^{\frac{1}{5}}$,$c=lo{g}_{2}\frac{7}{9}$,则a,b,c的大小关系是( )
| A. | b<a<c | B. | c<a<b | C. | c<b<a | D. | b<c<a |
2.
若函数y=ksin(kx+φ)(k>0,|φ|<$\frac{π}{2}$)与函数y=kx-k2+6的部分图象如图所示,则函数f(x)=sin(kx-φ)+cos(kx-φ)图象的一条对称轴的方程可以为( )
| A. | x=-$\frac{π}{24}$ | B. | x=$\frac{37π}{24}$ | C. | x=$\frac{17π}{24}$ | D. | x=-$\frac{13π}{24}$ |
19.关于x的不等式x2+ax-2<0在区间[1,4]上恒成立,则实数a的取值范围是( )
| A. | $(-∞,-\frac{7}{2})$ | B. | (-∞,1) | C. | $(-\frac{7}{2},+∞)$ | D. | (1,+∞) |