题目内容
18.若点P(a,b)是直线$y=\sqrt{3}x-\sqrt{3}$上的点,则(a+1)2+b2的最小值是( )| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 0 |
分析 求出M(-1,0)到直线的距离d,即可得出(a+1)2+b2的最小值=d2.
解答 解:求出M(-1,0)到直线的距离d=$\frac{|-\sqrt{3}-\sqrt{3}|}{2}$=$\sqrt{3}$,
∴(a+1)2+b2的最小值=d2=3.
故选:A.
点评 本题考查了点到直线的距离公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(x个周)和市场占有率(y%)的几组相关数据如表:
(Ⅰ)根据表中的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.
| x | 1 | 2 | 3 | 4 | 5 |
| y | 0.03 | 0.06 | 0.1 | 0.14 | 0.17 |
(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个周,该款旗舰机型市场占有率能超过0.40%(最后结果精确到整数).
参考公式:$\widehat{b}=\frac{{{\sum_{i=1}^{n}x}_{i}y}_{y}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-{n\overline{x}}^{2}}$,$\hat a=\bar y-\hat b\bar x$.
10.下列角中,与$-\frac{5π}{6}$终边相同的角是( )
| A. | $-\frac{11π}{6}$ | B. | $\frac{11π}{6}$ | C. | $-\frac{7π}{6}$ | D. | $\frac{7π}{6}$ |
7.已知tanα=2,则$\frac{2sinα+cosα}{sinα-cosα}$的值为( )
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |