ÌâÄ¿ÄÚÈÝ

9£®ÒÑÖªµãP£¨2£¬$\sqrt{2}$£©ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉϵÄÒ»µã£¬ÇÒÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬¹ýµãA£¨-¦Á£¬0£©ÈÎ×÷Á½ÌõÖ±Ïßl1£¬l2·Ö±ð½»ÍÖÔ²ÓÚE¡¢FÁ½µã£¬½»yÖáÓÚM£¬NÁ½µã£¬EÓëMÁ½¸öµã²»Öغϣ¬ÇÒE£¬F¹ØÓÚÔ­µã¶Ô³Æ£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñ½»xÖáÓÚ¶¨µãQ£¿ÈôÊÇ£¬Çó³öµãQµÄ×ø±ê£»·ñÔò£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬½«P£¨2£¬$\sqrt{2}$£©´úÈëÍÖÔ²·½³Ì¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃµãE×ø±ê£¬ÇóµÃÖ±ÏßAE·½³Ì·½³Ì£¬µ±x=0£¬ÇóµÃMµã×ø±ê£¬Í¬ÀíÇóµÃNµã×ø±ê£¬ÓÉ$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬¼´¿ÉÇóµÃtÖµ£¬Çó³öµãQµÄ×ø±ê£»

½â´ð ½â£º£¨1£©ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a=$\sqrt{2}$c£¬¼´a2=2b2£¬
½«P£¨2£¬$\sqrt{2}$£©´úÈë$\frac{{x}^{2}}{2{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬ÇóµÃa2=8£¬b2=4£¬
¡àÍÖÔ²µÄ·½³Ì$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£»
£¨2£©ÍÖÔ²µÄ×󶥵㣨-2$\sqrt{2}$£¬0£©£¬ÓÉE£¬F¹ØÓÚÔ­µã¶Ô³Æ£¬
ÉèÖ±ÏßEF·½³Ìy=kx£¨k¡Ù0£©£¬
$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$£¬ÔòE£¨$\frac{2\sqrt{2}}{\sqrt{1+2{k}^{2}}}$£¬$\frac{2\sqrt{2}k}{\sqrt{1+2{k}^{2}}}$£©£¬
¡àÖ±ÏßAE·½³Ìy=$\frac{k}{1+\sqrt{1+2{k}^{2}}}$£¨x+2$\sqrt{2}$£©£¬
µ±x=0£¬y=$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£¬
¡àµãM£¨0£¬$\frac{2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$£©£¬Í¬Àí¿ÉÖªN£¨0£¬$\frac{2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$£©£¬
¼ÙÉèÔÚxÖáÉÏ´æÔÚ¶¥µãQ£¨t£¬0£©£¬Ôò¡ÏMQNΪֱ½Ç£¬
Ôò$\overrightarrow{MQ}$•$\overrightarrow{NQ}$=0£¬
¼´t2+$\frac{-2\sqrt{2}k}{1+\sqrt{1+2{k}^{2}}}$¡Á$\frac{-2\sqrt{2}k}{1-\sqrt{1+2{k}^{2}}}$=0£¬t2-4=0£¬
½âµÃ£ºt=2»òt=-2£¬
¹Ê´æÔÚµãQ£¨2£¬0£©»òQ£¨-2£¬0£©ÒÔMNΪֱ¾¶µÄÔ²½»xÖáÓڴ˶¥µã£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø