题目内容
12.已知函数f(x)的定义域为D,若对于?a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f(x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);
②f(x)=4-cosx;
③$f(x)={x^{\frac{1}{2}}}(1≤x≤16)$;
④$f(x)=\frac{{{3^x}+2}}{{{3^x}+1}}$
其中为“三角形函数”的个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 设它的三边长分别为a,b,c,则a+b>c,若f(x)为“三角形函数,则满足f(x)max-f(x)min<f(x)min,即可.
解答 解:若f(x)为“三角形函数,
则f(x)max-f(x)min<f(x)min,
①若f(x)=lg(x+1)(x>0),则f(x)∈(0,+∞),不满足条件;
②若f(x)=4-cosx,则f(x)∈[3,5],满足条件;
③若$f(x)={x^{\frac{1}{2}}}(1≤x≤16)$,则f(x)∈[1,4],不满足条件;
④若$f(x)=\frac{{{3^x}+2}}{{{3^x}+1}}$=1+$\frac{1}{{3}^{x}+1}$,则f(x)∈(1,2),满足条件;
故选:B
点评 本题主要考查命题的真假判断,涉及新定义“三角形函数”,根据条件转化为求f(x)max-f(x)min<f(x)min,是解决本题的关键.综合性较强,难度较大.
练习册系列答案
相关题目
2.已知函数$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期为π,f(x)的图象向左平移$\frac{π}{3}$个单位后关于直线x=0对称,则$f(x+\frac{π}{12})+f(x-\frac{π}{6})$的单调递增区间为( )
| A. | [kπ-$\frac{11π}{24}$,kπ+$\frac{π}{24}$](k∈Z) | B. | $[kπ+\frac{3π}{8},kπ+\frac{7π}{8}](k∈Z)$ | ||
| C. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}](k∈Z)$ | D. | $[2kπ+\frac{3π}{4},2kπ+\frac{7π}{4}](k∈Z)$ |
20.已知$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是( )
| A. | (1,+∞) | B. | (1,3) | C. | (0,1)∪(1,3) | D. | $[\frac{3}{2},3)$ |