题目内容
已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为( )

| A、π+1 | ||
| B、4π+1 | ||
C、π+
| ||
D、4π+
|
考点:由三视图求面积、体积
专题:计算题,空间位置关系与距离
分析:几何体是圆柱与四棱锥的组合体,根据三视图判断圆柱的母线长与底面半径;判断三棱锥的高与底面三角形的形状及相关几何量的数据,把数据代入圆柱与棱锥的体积公式计算.
解答:
解:由三视图知:几何体是圆柱与四棱锥的组合体,
其中圆柱的母线长为1,底面直径为2;
三棱锥的高为1,底面为直角边长为
的等腰直角三角形,
∴几何体的体积V=π×12×1+
×
×
×
×1=π+
.
故选:C.
其中圆柱的母线长为1,底面直径为2;
三棱锥的高为1,底面为直角边长为
| 2 |
∴几何体的体积V=π×12×1+
| 1 |
| 3 |
| 1 |
| 2 |
| 2 |
| 2 |
| 1 |
| 3 |
故选:C.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.
练习册系列答案
相关题目
在△ABC中,
•
+
2=0,则△ABC的形状为( )
| AB |
| BC |
| AB |
| A、直角三角形 |
| B、等腰三角形 |
| C、等腰直角三角形 |
| D、等边三角形 |
常数列c,c,c,…,c,…( )
| A、一定是等差数列但不一定是等比数列 |
| B、一定是等比数列,但不一定是等差数列 |
| C、既一定是等差数列又一定是等比数列 |
| D、既不一定是等差数列,又不一定是等比数列 |
已知直线a?平面α,直线AO⊥α,垂足为O,AP∩α=P,若条件p:直线OP不垂直于直线a,条件q:直线AP不垂直于直线a,则条件p是条件q的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知f(x)=
则f(2014)的值为( )
|
| A、-1 | B、0 | C、1 | D、2 |
设有穷数列{an}(n=1,2,…,n),Sn是其前n项和,定义
为{an}的“凯森和”.今有500项的数列a1,a2,…,a500的“凯森和”为2004,则有501项的数列2,a1,a2,…,a500的“凯森和”为( )
| S1+S2+…+Sn |
| n |
| A、2002 | B、2004 |
| C、2008 | D、2014 |
在直角坐标系中,已知点A(0,1)和点B(-3,4),若点P在∠AOB的平分线上且|
|=2,则点P的坐标为( )
| OP |
A、(-
| ||||||||
B、(-
| ||||||||
C、(-
| ||||||||
D、(-
|
若函数f(x)在给定区间M上存在正数t,使得对于任意的x∈M,有x+t∈M,且f(x+t)≥f(x),则称f(x)为M上t级类增函数,则下列命题中正确的是( )
A、函数f(x)=
| ||||||
| B、函数f(x)=|log2(x-1)|是(1,+∞)上的1级类增函数 | ||||||
C、若函数f(x)=sinx+ax为[
| ||||||
| D、若函数f(x)=x2-3x为[1,+∞)上的t级类增函数,则实数t的取值范围为[2,+∞) |