题目内容
1.求下列函数的积分.(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx;
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx.
分析 (1)根据定积分的计算法则计算即可,
(2)根据定积分的几何意义即可求出.
解答 解:(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx=($\frac{1}{3}$x3+$\frac{2}{3}{x}^{\frac{3}{2}}$)|${\;}_{0}^{1}$=$\frac{1}{3}$+$\frac{2}{3}$=1,
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原点为圆心以2为半径的圆的面积的四分之一,
故${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π
点评 本题考查了定积分的计算和定积分的几何意义,属于基础题.
练习册系列答案
相关题目
16.已知a=($\sqrt{2}$)-1,b=log23,c=lne,则a,b,c的大小关系为( )
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | c<a<b |
16.曲线y=xex+1在点(1,e+1)处的切线方程是( )
| A. | 2ex-y-e+1=0 | B. | 2ey-x+e+1=0 | C. | 2ex+y-e+1=0 | D. | 2ey+x-e+1=0 |
6.下列关系式正确的是( )
| A. | $\overrightarrow{AB}$+$\overrightarrow{BA}$=0 | B. | $\overrightarrow a$•$\overrightarrow b$是一个向量 | C. | $\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$ | D. | 0•$\overrightarrow{AB}$=$\overrightarrow 0$ |
13.双曲线$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦点坐标为( )
| A. | (3,0)和(-3,0) | B. | (2,0)和(-2,0) | C. | (0,3)和(0,-3) | D. | (0,2)和(0,-2) |