题目内容

4.已知数列{an}的前n项和为Sn,且Sn=2nan-1,则数列{$\frac{{a}_{n}}{{a}_{n+1}}$}的前n项和Tn=2n+$\frac{1}{{2}^{n}}$-1.

分析 通过Sn=2nan-1与Sn-1=2n-1an-1-1(n≥2)作差、整理可知$\frac{{a}_{n}}{{a}_{n+1}}$=2-$\frac{1}{{2}^{n}}$,进而利用分组法求和计算即得结论.

解答 解:∵Sn=2nan-1,
∴Sn-1=2n-1an-1-1(n≥2),
两式相减得:an=2nan-2n-1an-1(n≥2),
整理得:$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{2}^{n+1}-1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$,
∴Tn=2n-$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=2n+$\frac{1}{{2}^{n}}$-1,
故答案为:2n+$\frac{1}{{2}^{n}}$-1.

点评 本题考查数列的求和,考查分组法求和,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网