题目内容

如图,如图,A,B是圆O上的两点,且OA⊥OB,OA=2,C为OA的中点,连接BC并延长交圆O于点D,则CD=
 
考点:与圆有关的比例线段
专题:直线与圆
分析:由题设条件推导出OC=CA=1,OB=2,BC=
5
,由相交弦定理得(2+1)•(2-1)=BC•CD,由此能求出CD.
解答: 解:如图,∵A,B是圆O上的两点,且OA⊥OB,OA=2,
C为OA的中点,连接BC并延长交圆O于点D,
∴OC=CA=1,OB=2,
∴BC=
22+12
=
5

∴由相交弦定理得(2+1)•(2-1)=BC•CD,
∴CD=
3
5
=
3
5
5

故答案为:
3
5
5
点评:本题考查与圆相关的线段长的求法,是中档题,解题时要认真审题,注意勾股定理和相交弦定理的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网