题目内容

函数y=
-x2-4x+5
的值域为
 
考点:函数的值域
专题:函数的性质及应用
分析:将-x2-4x+5配方后即可得到
-x2-4x+5
的最大值和最小值,从而求出该函数的值域.
解答: 解:y=
-x2-4x+5
=
-(x+2)2+9

0≤
-(x+2)2+9
9
=3
,即0≤y≤3;
∴函数y=
-x2-4x+5
的值域为[0,3].
故答案为:[0,3].
点评:考查通过配方求二次函数最值的方法,以及被开方数大于等于0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网