题目内容

(1)化简:
sin(π-α)cos(π+α)
cos(
2
-α)tan(
2
+α)

(2)已知sinα+cosα=
1
5
,点P(-tanα,cosα)在第四象限,求
sinα-cosα
0.2+sinαcosα
的值.
考点:同角三角函数基本关系的运用,运用诱导公式化简求值
专题:综合题,三角函数的求值
分析:(1)利用诱导公式,可得结论;
(2)先计算sinα-cosα=
7
5
,再求
sinα-cosα
0.2+sinαcosα
的值.
解答: 解:(1)
sin(π-α)cos(π+α)
cos(
2
-α)tan(
2
+α)
=
sinα(-cosα)
-sinα(-cotα)
=-sinα-------(6分)
(2)由点(-tanα,cosα)在第四象限,得-tanα>0,cosα<0,
所以α是第二象限角.------(8分)
故sinα-cosα>0
由sinα+cosα=
1
5
,两边平方得1+2sinαcosα=
1
25

所以sinαcosα=-
12
25
,------------(10分)
又sinα-cosα=
7
5
,-------12
所以
sinα-cosα
0.2+sinαcosα
=
7
5
0.2-
12
25
=-5-----------------(14分)
点评:本题考查同角三角函数基本关系的运用,考查运用诱导公式化简求值,难度中等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网