题目内容
4.命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是若实数a,b满足a=4且b=3,则a+b=7”.分析 根据四种命题的定义,结合原命题,可得其否命题.
解答 解:命题“若实数a,b满足a≠4或b≠3,则a+b≠7”的否命题是“若实数a,b满足a=4且b=3,则a+b=7”,
故答案为:若实数a,b满足a=4且b=3,则a+b=7”
点评 本题考查的知识点是四种命题,正确理解四种命题的定义,是解答的关键.
练习册系列答案
相关题目
15.在三角形ABC中,$sinA=\frac{4}{5},cosB=\frac{5}{13}$,则cosC=( )
| A. | $\frac{33}{65}$或$\frac{63}{65}$ | B. | $\frac{63}{65}$ | C. | $\frac{33}{65}$ | D. | 以上都不对 |
12.若一个椭圆的内接正方形有两边分别经过它的两个焦点,则此椭圆的离心率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
16.设f(x)=5|x|-$\frac{1}{1+{x}^{2}}$,则使得f(2x+1)>f(x)成立的x取值范围是( )
| A. | (-1,-$\frac{1}{3}$) | B. | (-3,-1) | C. | (-1,+∞) | D. | (-∞,-1)∪(-$\frac{1}{3}$,+∞) |
13.已知x、y∈R,且x>y>0,则( )
| A. | $\frac{1}{x}-\frac{1}{y}>0$ | B. | ${(\frac{1}{2})^x}-{(\frac{1}{2})^y}<0$ | C. | log2x+log2y>0 | D. | sinx-siny>0 |