题目内容

已知等差数列{an}中,a7=
1
4
,则a1+a6+a8+a13等于
 
考点:等差数列的性质
专题:等差数列与等比数列
分析:由等差数列的性质可得a1+a13=a6+a8=2a7,代值计算可得.
解答: 解:由等差数列的性质可得a1+a13=a6+a8=2a7=
1
2

∴a1+a6+a8+a13=(a1+a13)+(a6+a8)=1
故答案为:1
点评:本题考查等差数列的性质,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网