题目内容
若双曲线-=1(a>0,b>0)的左、右焦点分别为F1和F2,线段F1F2被抛物线y2=2bx的焦点分成5∶3两段,则此双曲线的离心率为________.
已知双曲线-=1(a>0,b>0)的一个焦点与圆x2+y2-10x=0的圆心重合,且双曲线的离心率等于,则该双曲线的标准方程为( ).
A.-=1 B.-=1
C.-=1 D.-=1
椭圆C:+=1(a>b>0)的左、右焦点分别是F1,F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(1)求椭圆C的方程;
(2)点P是椭圆C上除长轴端点外的任一点,❶连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.❷设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明+为定值,❸并求出这个定值.
椭圆+=1的焦距为( ).
A.10 B.5 C. D.2
已知两点M(-5,0)和N(5,0),若直线上存在点P,使|PM|-|PN|=6,则称该直线为“R型直线”.给出下列直线:①y=x+1;②y=2;③y=x;④y=2x+1,其中为“R型直线”的是( ).
A.①② B.①③ C.①④ D.③④
在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
如图,点P(0,-1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.
(2)求△ABD面积取最
大值时直线l1的方程.
实部为-2,虚部为1 的复数所对应的点位于复平面的( )
第一象限 第二象限 第三象限 第四象限
给出下列命题;
①设表示不超过的最大整数,则
;
②定义在上的函数,函数与的图象关于轴对称;
③函数的对称中心为;
④已知函数在处有极值,则或;
⑤定义:若任意,总有,就称集合为的“闭集”,已知 且为的“闭集”,则这样的集合共有7个。
其中正确的命题序号是____________