题目内容

9.如图,在正三棱柱ABC-A1B1C1中,点D是AB中点,M是AA1上一点,且AM=tAA1
(1)求证:BC1∥平面A1CD;
(2)若3AB=2AA1,当t为何值时,B1M⊥平面A1CD?

分析 (1)取A1B1的中点E,连接BE,C1E.只需证明,面EBC1∥平面A1CD;即可得到BC1∥平面A1CD.
(2)易得CD⊥B1M,要使B1M⊥平面A1CD,只需DA1⊥MB即可,如下图,当DA1⊥MB时,△ADA1∽△A1MB1,⇒$\frac{AD}{{A}_{1}M}=\frac{A{A}_{1}}{{A}_{1}{B}_{1}}$,即可求得t.

解答 解:(1)如图1,取A1B1的中点E,连接BE,C1E.
在正三棱柱ABC-A1B1C1中,点D是AB中点,可得CD∥C1E
又因为DB∥EA1,DB=EA1⇒BE∥DA1
且CD∩DA1=D,BE∩C1E=E,面EBC1∥平面A1CD;
∵BC1?面EBC1,BC1?平面A1CD,∴BC1∥平面A1CD

(2)由在正三棱柱ABC-A1B1C1中,点D是AB中点,可得CD⊥面AA1B1B.
⇒CD⊥B1M,
∴要使B1M⊥平面A1CD,只需DA1⊥MB即可,如下图,
当DA1⊥MB时,△ADA1∽△A1MB1
⇒$\frac{AD}{{A}_{1}M}=\frac{A{A}_{1}}{{A}_{1}{B}_{1}}$,又∵3AB=2AA1,DAB为中点
∴$\frac{\frac{1}{2}AB}{{A}_{1}M}=\frac{A{A}_{1}}{AB}=\frac{3}{2}$⇒${A}_{1}M=\frac{1}{3}AB=\frac{1}{3}×\frac{2}{3}A{A}_{1}=\frac{2}{9}A{A}_{1}$
∴$AM=\frac{7}{9}A{A}_{1}$
即当t=$\frac{7}{9}$时,B1M⊥平面A1CD.

点评 本题考查了空间线面平行的判定,线面垂直的判定,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网