题目内容

17.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知acosB=bcosA,边BC上的中线长为4.
(Ⅰ)若$A=\frac{π}{6}$,求c;
(Ⅱ)求△ABC面积的最大值.

分析 (Ⅰ) 由acosB=bcosA及正弦定理得sinAcosB=sinBcosA,解得sin(A-B)=0,可得$B=A=\frac{π}{6}$,解得$c=\sqrt{3}a$,由余弦定理即可解得c的值.
(Ⅱ) 由A=B知c=2acosA,利用余弦定理可解得${a^2}=\frac{64}{{1+8{{cos}^2}A}}$,由三角形面积公式可求$S=\frac{1}{2}acsinA=\frac{64sinAcosA}{{{{sin}^2}A+9{{cos}^2}A}}$,由基本不等式得$S≤\frac{32}{3}$,从而得解.

解答 (本题满分为14分)
解:(Ⅰ) 由acosB=bcosA及正弦定理得sinAcosB=sinBcosA,…(1分)
所以sin(A-B)=0,
故$B=A=\frac{π}{6}$,…(3分)
所以$c=\sqrt{3}a$,由余弦定理得$16={c^2}+{(\frac{a}{2})^2}-2c•\frac{a}{2}cos\frac{π}{6}$,
解得$c=\frac{{8\sqrt{21}}}{7}$…(6分)
(Ⅱ) 由A=B知c=2acosA,及$16={c^2}+{(\frac{a}{2})^2}-2c•\frac{a}{2}cosA$,解得${a^2}=\frac{64}{{1+8{{cos}^2}A}}$…(8分)

所以△ABC的面积$S=\frac{1}{2}acsinA=\frac{64sinAcosA}{{{{sin}^2}A+9{{cos}^2}A}}$…(10分)

由基本不等式得$S≤\frac{32}{3}$,…(13分)

当且仅当sinA=3cosA时,等号成立.
所以△ABC面积的最大值为$\frac{32}{3}$.…(14分)

点评 本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网