题目内容
1.已知函数f(x)的导函数f′(x)=(1-x)e-x.若f(x)在(m,m+2)上单调递增,则实数m的取值范围是( )| A. | [1,+∞) | B. | (-∞,1] | C. | [-1,+∞) | D. | (-∞,-1] |
分析 求出函数的单调增区间,利用已知条件,列出不等式求解即可.
解答 解:函数f(x)的导函数f′(x)=(1-x)e-x.
则(1-x)e-x≥0,可得x≤1,函数f(x)的单调增区间为:(-∞,1].
若f(x)在(m,m+2)上单调递增,
可得m+2≤1,解得m≤-1.
故选:D.
点评 本题考查函数的导数的应用,函数的单调性与导数的关系,考查计算能力.
练习册系列答案
相关题目
16.已知13+23+33+…+n3=$\frac{{{n^2}{{(an+b)}^2}}}{4}$对一切n∈N+都成立,那么a,b的可能值为( )
| A. | a=b=1 | B. | a=1,b=2 | C. | a=2,b=1 | D. | 不存在这样的a,b |
6.已知函数g(x)满足g(x)=g($\frac{1}{x}$),当x∈[$\frac{1}{3}$,1]时,g(x)=-3lnx.若函数f(x)=g(x)-mx在区间[$\frac{1}{3}$,3]上有三个不同的零点,则实数m的取值范围是( ),则实数m的取值范围是( )
| A. | [$\frac{ln3}{3}$,$\frac{1}{e}$) | B. | [ln3,$\frac{3}{e}$) | C. | [ln3,$\frac{1}{e}$) | D. | (0,$\frac{1}{e}$) |
13.为减少“舌尖上的浪费”,我校的学生会干部对一中,城关中学的食堂用餐的学生能否做到“光盘”进行调查.现从中随机抽取男、女生各25名进行问卷调查,得到了如下列联表:
(Ⅰ)补全相应的2×2列联表;
(Ⅱ)运用独立性检验的思想方法分析:能否在犯错误的概率不超过0.05的前提下认为在学校食堂用餐的学生能做到“光盘”与性别有关?并说明理由.
| 男性 | 女性 | 合计 | |
| 做不到“光盘” | 18 | ||
| 能做到“光盘” | 14 | ||
| 合 计 | 50 |
(Ⅱ)运用独立性检验的思想方法分析:能否在犯错误的概率不超过0.05的前提下认为在学校食堂用餐的学生能做到“光盘”与性别有关?并说明理由.
10.
如图所示是y=f(x)的导数图象,则正确的判断是( )
①f(x)在(-3,1)上是增函数;
②x=-1是f(x)的极小值点;
③x=2是f(x)的极小值点;
④f(x)在(2,4)上是减函数,在(-1,2)上是增函数.
①f(x)在(-3,1)上是增函数;
②x=-1是f(x)的极小值点;
③x=2是f(x)的极小值点;
④f(x)在(2,4)上是减函数,在(-1,2)上是增函数.
| A. | ①②④ | B. | ②④ | C. | ③④ | D. | ①③④ |
11.如果函数f(x)=x2-ax-3在区间(-∞,3]上单调递减,则实数a满足的条件使( )
| A. | a≤6 | B. | a≥6 | C. | a≥3 | D. | a≥-3 |