ÌâÄ¿ÄÚÈÝ

11£®ÒÑÖªÅ×ÎïÏßE£ºx2=2py£¨p£¾0£©£¬¹ýµãM£¨1£¬-1£©×÷Å×ÎïÏßEµÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪA£¬B£¬Ö±ÏßABµÄбÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóÅ×ÎïÏßEµÄ±ê×¼·½³Ì£»
£¨2£©ÓëÔ²x2+£¨y-1£©2=1ÏàÇеÄÖ±Ïßl£ºy=kx+m£¨ÆäÖÐm¡Ê£¨2£¬4]£©£¬ÓëÅ×ÎïÏß½»ÓÚP£¬QÁ½µã£¬ÈôÔÚÅ×ÎïÏßÉÏ´æÔÚµãC£¬Ê¹$\overrightarrow{OC}$=¦Ë$£¨\overrightarrow{OP}+\overrightarrow{OQ}£©$£¨¦Ë£¾0£©£¬Çó¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Çó³öÖ±ÏßABµÄ·½³ÌΪx-py+p=0£¬ÀûÓÃÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬´Ó¶øÇóp£¬¼´¿ÉÇó³öÅ×ÎïÏߵıê×¼·½³Ì£»
£¨2£©ÓÉÌâÒâÉèÖ±Ïßy=kx+m£¬ÓÖÖ±ÏßlÓëÔ²£¨y-1£©2+x2=1ÏàÇУ¬ËùÒÔ$\frac{|m-1|}{{\sqrt{1+{k^2}}}}=1$£¬¼´k2=m2-2m£¬ÓÉÖ±Ïß·½³ÌÓëÅ×ÎïÏßÁªÁ¢¿ÉµÃ¡÷=16k2+16m£¾0£¬½ø¶øÓÉΤ´ï¶¨Àí¿ÉµÃ$¦Ë=1+\frac{1}{2£¨m-2£©}$£¬´Ó¶øÇó¦ËµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÔòµãA´¦Å×ÎïÏßµÄÇÐÏßΪ$y=\frac{x_1}{p}x-{y_1}$£¬¹ýµãM£¨1£¬-1£©£¬Òò¶øx1-py1+p=0£»
ͬÀí£¬µãB´¦Å×ÎïÏßµÄÇÐÏßΪ$y=\frac{x_2}{p}x-{y_2}$£¬¹ýµãM£¨1£¬-1£©£¬Òò¶øx2-py2+p=0£®
Á½Ê½½áºÏ£¬ËµÃ÷Ö±Ïßx-py-p=0¹ýA£¬BÁ½µã£¬Ò²¾ÍÊÇÖ±ÏßABµÄ·½³ÌΪx-py+p=0£®
ÓÉÒÑÖªÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬Öªp=2£®
¹ÊËùÇóÅ×ÎïÏߵķ½³ÌΪx2=4y£®
£¨2£©Ö±ÏßlµÄ·½³ÌΪy=kx+m£¬ÓÖÖ±ÏßlÓëÔ²£¨y-1£©2+x2=1ÏàÇУ¬
ËùÒÔ$\frac{|m-1|}{{\sqrt{1+{k^2}}}}=1$£¬¼´k2=m2-2m£®
ÓëÅ×ÎïÏß·½³ÌÁªÁ¢£¬¼´$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}=4y}\end{array}}\right.$£¬
»¯¼òÏûyµÃx2-4kx-4m=0£¬¡÷=16k2+16m£¾0£¬¡àm£¾1»òm£¼0£¬¡ß2£¼m¡Ü4£¬¡à¡÷£¾0ºã³ÉÁ¢£®
ÉèP£¨x3£¬y3£©£¬Q£¨x4£¬y4£©£¬Ôòx3+x4=4k£¬${y_3}+{y_4}=k£¨{x_3}+{x_4}£©+2m=4{k^2}+2m$£®
ÓÉ$\overrightarrow{OC}=¦Ë£¨\overrightarrow{OP}+\overrightarrow{OQ}£©£¨¦Ë£¾0£©$£¬Ôò$\overrightarrow{OC}=£¨4k¦Ë£¬¦Ë£¨4{k^2}+2m£©£©$£¬
ÓÖµãCÔÚÅ×ÎïÏßÉÏ£¬Ôò$¦Ë=1+\frac{1}{2£¨m-2£©}$£¬ËùÒԦ˵Äȡֵ·¶Î§Îª$[\frac{5}{4}£¬+¡Þ£©$£®

µãÆÀ ±¾Ì⿼²éÁËÔ²×¶ÇúÏߵķ½³ÌµÄÇ󷨼°Ô²×¶ÇúÏßÓëÖ±ÏßµÄÔËË㣬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø