题目内容
6.行列式$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$的最大值为13.分析 利用二阶行列式展开式法则和三角函数性质及诱导公式求解.
解答 解:$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$
=12cos($\frac{π}{2}+x$)cot(π-x)-5cosxtanx
=12(-sinx)(-cotx)-5sinx
=12cosx-5sinx
=13sin(x+θ)≤13,
∴行列式$|{\begin{array}{l}{12cos(\;\frac{π}{2}+x)}&{tanx}\\{5cosx}&{\;cot(\;π-x)}\end{array}}|$的最大值为13.
故答案为:13.
点评 本题考查二阶行列式的最大值的求法,是基础题,解题时要认真审题,注意二阶行列式展开式法则和三角函数性质及诱导公式的合理运用.
练习册系列答案
相关题目
16.已知集合$A=\{y|y=sinx,0<x<\frac{π}{2}\},B=\{x|y={log_2}x\}$,则A∩B=( )
| A. | {x|0<x<1} | B. | {x|-1<x<1} | C. | {x|-1<x<0} | D. | {x|x>0} |
11.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1内有两点A(2,2),B(3,0),P为椭圆上任意一点,则|PA|+$\frac{5}{3}$|PB|的最小值为( )
| A. | $\frac{25}{3}$ | B. | $\frac{25}{6}$ | C. | 4 | D. | $\frac{19}{3}$ |
16.抛物线x2=2y的焦点到其准线的距离是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |