题目内容

14.如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,A1C=BC,B1C1∥BC,且${B_1}{C_1}=\frac{1}{2}BC$.
(I)求证:A1B⊥B1C;
(II)求证:AB1∥平面A1C1C.

分析 (I)欲证明A1B⊥B1C,只需推知A1B⊥平面AB1C;
(Ⅱ)取BC的中点E,证明四边形CEB1C1为平行四边形,可得B1E∥C1C,从而可得B1E∥面A1C1C,再证明AE∥面A1C1C,利用面面平行的判定,可得面B1AE∥面A1C1C,从而可得AB1∥面A1C1C.

解答 解:(I)证明:设A1B与AB1交于点O,连接CO.
四边形ABB1A1是正方形,
∴A1B⊥AB1,A1O=BO,
∴在△A1BC中,A1C=BC,∴A1B⊥CO.
又因为A1B∩CO=O,∴A1B⊥面AB1C,
又B1C?面AB1C,A1B⊥B1C;
(Ⅱ)取BC中点D,连接AD,C1D,BB1D.
∵$\left\{\begin{array}{l}{{B}_{1}{C}_{1}∥BC,{B}_{1}C{1}_{1}=\frac{1}{2}BC}\\{{B}_{1}{C}_{1}∥DC,{B}_{1}{C}_{1}∥BD}\end{array}\right.$∴四边形B1C1CD是平行四边形.
∴B1D∥CC1,B1B∥C1D,又B1B∥A1A,B1B=A1A,∴A1A∥C1D,A1A=C1D,
∴四边形A1ADC1是平行四边形.∴AD∥A1C1
又B1D?面A1C1C,AD?面A1C1C,∴B1D∥面A1C1C,AD∥面A1C1C,
又B1D∩AD=D,∴平面.AB1D∥面A1C1C,
∵AB1?面AB1D,∴AB1∥平面A1C1C.

点评 本题考查面面垂直,考查线面平行,解题的关键是掌握面面垂直的判定方法,正确运用面面平行判断线面平行,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网