题目内容

5.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{1-\frac{x}{2},x<1}\end{array}\right.$,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1+x2的取值范围是(  )
A.[4-2ln2,+∞)B.[1+$\sqrt{e}$,+∞)C.[4-2ln2,1+$\sqrt{e}$)D.(-∞,1+$\sqrt{e}$)

分析 由题意可知:当x≥1时,f(x)+1≥1,f[f(x)+1]=ln(f(x)+1),当x<1,f(x)=1-$\frac{x}{2}$>$\frac{1}{2}$,f[f(x)+1]=ln(f(x)+1),f[f(x)+1]=ln(f(x)+1)+m=0,则x1+x2=et+2-2t,t>$\frac{1}{2}$,设g(t)=et+2-2t,t>$\frac{1}{2}$,求导,利用导数求得函数的单调性区间,即可求得x1+x2的取值范围.

解答 解:当x≥1时,f(x)=lnx≥0,
∴f(x)+1≥1,
∴f[f(x)+1]=ln(f(x)+1),
当x<1,f(x)=1-$\frac{x}{2}$>$\frac{1}{2}$,
f(x)+1>$\frac{3}{2}$,
f[f(x)+1]=ln(f(x)+1),
综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,
则f(x)+1=e-m,f(x)=e-m-1,有两个根x1,x2,(不妨设x1<x2),
当x≥1是,lnx2=e-m-1,当x<1时,1-$\frac{{x}_{1}}{2}$=e-m-1,
令t=e-m-1>$\frac{1}{2}$,则lnx2=t,x2=et,1-$\frac{{x}_{1}}{2}$=t,x1=2-2t,
∴x1+x2=et+2-2t,t>$\frac{1}{2}$,
设g(t)=et+2-2t,t>$\frac{1}{2}$,
求导g′(t)=et-2,令g′(t)=0,解得:t=ln2,
t∈($\frac{1}{2}$,ln2),g′(t)<0,函数g(t)单调递减,
t∈(ln2,+∞),g′(t)>0,函数g(t)单调递增,
∴当t=ln2时,g(t)取最小值,最小值为:g(t)min=g(ln2)=2+2-2ln2=4-2ln2,
∴g(x)的值域为[4-2ln2,+∞),
∴x1+x2取值范围[4-2ln2,+∞),
故选:A.

点评 本题考查函数零点的判定,利用导数求函数的单调性及最值,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网