题目内容

16.已知f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{g(x),x<0}\end{array}}$为奇函数,则g(x)=-x2-2x(x<0).

分析 利用函数的奇偶性的性质求得当x<0时,f(x)的解析式,可得g(x)的解析式.

解答 解:∵已知f(x)=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{g(x),x<0}\end{array}}$为奇函数,设x<0,则-x>0,f(-x)=x2-2(-x)=x2+2x=-f(x),
∴f(x)=-x2-2x,
∴g(x)=-x2-2x,
故答案为:-x2-2x(x<0).

点评 本题主要考查函数的奇偶性的性质应用,求函数的解析式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网