题目内容
函数y=ax2+b在(-3,-1)上是增函数,那么该函数在(1,3)上是 .
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系即可得到结论.
解答:
解:∵函数y=ax2+b为偶函数,且函数y=ax2+b在(-3,-1)上是增函数,
∴函数y=ax2+b在(1,3)上是减函数,
故答案为:减函数
∴函数y=ax2+b在(1,3)上是减函数,
故答案为:减函数
点评:本题主要考查函数单调性的判断,根据函数奇偶性和单调性之间的关系是解决本题的关键.
练习册系列答案
相关题目
设x1,x2分别是方程xax=1和xlogax=1的根(其中a>1),则x1+2x2的取值范围( )
A、(2
| ||
B、[2
| ||
| C、(3,+∞) | ||
| D、[3,+∞) |
已知向量
=(0,sin
),
=(1,2cos
),函数f(x)=
•
,g(x)=
2+
2-
,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )
| a |
| x |
| 2 |
| b |
| x |
| 2 |
| 3 |
| 2 |
| a |
| b |
| a |
| b |
| 7 |
| 2 |
A、向左平移
| ||
B、向右平移
| ||
C、向左平移
| ||
D、向右平移
|
已知A,B是圆O:x2+y2=1上的两个动点,P是AB线段上的动点,当△AOB的面积最大时,则
2-
•
的最小值是( )
| AP |
| AO |
| AP |
A、-
| ||||
| B、0 | ||||
C、-
| ||||
D、-
|
已知数列{an}满足a1=1且
=
,则a2012=( )
| an+1 |
| an |
| n+1 |
| n |
| A、2 010 |
| B、2 011 |
| C、2 012 |
| D、2 013 |