题目内容
9.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,左、右两顶点分别为A1,A2,以A1A2为直径的圆与双曲线的一条渐近线交于点P(点P在第一象限内),若直线FP平行于另一条渐近线,则该双曲线离心率e的值为$\sqrt{2}$.分析 设出双曲线的右焦点,渐近线方程,由圆x2+y2=a2与直线y=$\frac{b}{a}$x,求得交点P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),再由两直线平行的条件:斜率相等,化简方程,结合离心率公式即可得到所求值.
解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),
渐近线方程为y=±$\frac{b}{a}$x,
由圆x2+y2=a2与直线y=$\frac{b}{a}$x,求得交点P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由直线FP平行于另一条渐近线,可得:
$\frac{\frac{ab}{c}}{\frac{{a}^{2}}{c}-c}$=-$\frac{b}{a}$,化为c2=2a2,
即有e=$\frac{c}{a}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题考查双曲线的离心率的求法,注意运用直线和圆求得交点,以及两直线平行的条件,考查运算能力,属于中档题.
练习册系列答案
相关题目
4.(1+x)(2x-$\frac{1}{x}$)5的展开式中含x2的项的系数为( )
| A. | -80 | B. | -40 | C. | 40 | D. | 80 |
20.执行如图所示的程序框图,则输出的i值为( )

| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
1.四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为( )
| A. | 8π | B. | $\frac{{8\sqrt{2}}}{3}π$ | C. | $\frac{{8\sqrt{3}}}{3}π$ | D. | $\frac{16}{3}π$ |
18.方程lnx-x2+4x-4=0的实数根个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |