题目内容

1.四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为(  )
A.B.$\frac{{8\sqrt{2}}}{3}π$C.$\frac{{8\sqrt{3}}}{3}π$D.$\frac{16}{3}π$

分析 由题意画出图形,设出底面三角形的外心G,找出四面体ABCD的外接球的球心O,通过求解直角三角形得到三棱锥的高,则答案可求.

解答 解:如图,∵BC=CD=1,∠BCD=60°
∴底面△BCD为等边三角形
取CD中点为E,连接BE,
∴△BCD的外心G在BE上,设为G,取BC中点F,连接GF,
在Rt△BCE中,由CE=$\frac{1}{2}$,∠CBE=30°,得BF=$\frac{1}{2}BC$=$\frac{1}{2}$,
又在Rt△BFG中,得BG=$\frac{\frac{1}{2}}{cos30°}=\frac{\sqrt{3}}{3}$,
过G作AB的平行线与AB的中垂线HO交于O,
则O为四面体ABCD的外接球的球心,即R=OB,
∵AB⊥平面BCD,∴OG⊥BG,
在Rt△BGO中,求得OB=$\sqrt{O{G}^{2}+B{G}^{2}}=\sqrt{{1}^{2}+(\frac{\sqrt{3}}{3})^{2}}=\frac{2\sqrt{3}}{3}$,
∴球O的表面积为$4π•(\frac{2\sqrt{3}}{3})^{2}=\frac{16π}{3}$.
故选:D.

点评 本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网