题目内容
给出下列等式:
×
=1-
;?
×
+
×
=1-
;
×
+
×
+
×
=1-
…
由以上等式推出一个一般结论:
对于n∈N*,
×
+
×
+…+
×
= .
| 3 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×21 |
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| 1 |
| 3×22 |
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| 5 |
| 3×4 |
| 1 |
| 23 |
| 1 |
| 4×23 |
由以上等式推出一个一般结论:
对于n∈N*,
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| n+2 |
| n(n+1) |
| 1 |
| 2n |
考点:归纳推理
专题:归纳猜想型
分析:由已知中的三个式子,我们分析等式左边每一个累加项的变化趋势,可以归纳出其通项为
×
,分析等式右边的式子,发现每一个式了均为两项差的形式,且被减数均为1,减数为
,由此即可得到结论.
| n+2 |
| n(n+1) |
| 1 |
| 2n |
| 1 |
| (n+1)2n |
解答:
解:由已知中的等式:
×
=1-
;?
×
+
×
=1-
;
×
+
×
+
×
=1-
…
由以上等式我们可以推出一个一般结论:
对于n∈N*,
×
+
×
+…+
×
=1-
.
故答案为:
×
+
×
+…+
×
=1-
.
| 3 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×21 |
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| 1 |
| 3×22 |
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| 5 |
| 3×4 |
| 1 |
| 23 |
| 1 |
| 4×23 |
由以上等式我们可以推出一个一般结论:
对于n∈N*,
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| n+2 |
| n(n+1) |
| 1 |
| 2n |
| 1 |
| (n+1)2n |
故答案为:
| 3 |
| 1×2 |
| 1 |
| 2 |
| 4 |
| 2×3 |
| 1 |
| 22 |
| n+2 |
| n(n+1) |
| 1 |
| 2n |
| 1 |
| (n+1)2n |
点评:本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目