题目内容

8.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,如果x1,x2∈($\frac{π}{6}$,$\frac{2π}{3}$)且x1,x2是方程f(x)=m的两个实数根,其中m∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则f(x1+x2)=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再根据正弦函数图象的对称性,求得 x1+x2=$\frac{5π}{6}$,可得f(x1+x2)的值.

解答 解:由函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得$\frac{1}{2}•\frac{2π}{ω}=\frac{2π}{3}-\frac{π}{6}$,∴ω=2.
再根据五点法作图可的2•$\frac{π}{6}$+φ=0,∴φ=-$\frac{π}{3}$,f(x)=sin(2x-$\frac{π}{3}$).
x1,x2∈($\frac{π}{6}$,$\frac{2π}{3}$)且x1,x2是方程f(x)=m的两个实数根,其中m∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
则$\frac{1}{2}$(x1+x2)=$\frac{5π}{12}$,
∴x1+x2=$\frac{5π}{6}$,f(x1+x2)=sin(2•$\frac{5π}{6}$-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$,
故选:A.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网