ÌâÄ¿ÄÚÈÝ
É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®
£¨1£©Çóf£¨0£©£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©ÊýÁÐ{an}Âú×ãa1=f£¨0£©£¬ÇÒf(an+1)=
(n¡ÊN*)£®
¢ÙÇó{an}µÄͨÏʽ£»
¢Úµ±a£¾1ʱ£¬²»µÈʽ
+
+¡+
£¾
£¨loga+1x-logax+1£©¶Ô²»Ð¡ÓÚ2µÄÕýÕûÊýºã³ÉÁ¢£¬ÇóxµÄȡֵ·¶Î§£®
£¨1£©Çóf£¨0£©£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©ÊýÁÐ{an}Âú×ãa1=f£¨0£©£¬ÇÒf(an+1)=
| 1 |
| f(-2-an) |
¢ÙÇó{an}µÄͨÏʽ£»
¢Úµ±a£¾1ʱ£¬²»µÈʽ
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| a2n |
| 12 |
| 35 |
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,º¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷,µÈ²îÊýÁеÄͨÏʽ,ÊýÁеÝÍÆÊ½
רÌ⣺ѹÖáÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©Áîx=-1£¬y=0£¬½áºÏf£¨-1£©£¾1£¬¿ÉÇóf£¨0£©£»ÀûÓõ¥µ÷ÐԵ͍Ò壬¿ÉÒÔÖ¤Ã÷f£¨x£©ÔÚRÉÏÊǼõº¯Êý£»
£¨2£©¢ÙÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬¹Ê{an}µÈ²îÊýÁУ¬¼´¿ÉÇó{an}µÄͨÏʽ£»
¢ÚÇó³ö×ó±ßµÄ×îСֵ£¬¿ÉµÃ
£¾
(loga+1x-logax+1)£¬¼´loga+1x-logax+1£¼1£¬´Ó¶ø¿ÉÇóxµÄȡֵ·¶Î§£®
£¨2£©¢ÙÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬¹Ê{an}µÈ²îÊýÁУ¬¼´¿ÉÇó{an}µÄͨÏʽ£»
¢ÚÇó³ö×ó±ßµÄ×îСֵ£¬¿ÉµÃ
| 12 |
| 35 |
| 12 |
| 35 |
½â´ð£º
½â£º£¨1£©ÓÉx£¬y¡ÊR£¬f£¨x+y£©=f£¨x£©•f£¨y£©£¬ÇÒx£¼0ʱ£¬f£¨x£©£¾1£¬
Áîx=-1£¬y=0£¬¡àf£¨-1£©=f£¨-1£©f£¨0£©£¬
¡ßf£¨-1£©£¾1£¬
¡àf£¨0£©=1£»
Èôx£¾0£¬Ôòf£¨x-x£©=f£¨0£©=f£¨x£©f£¨-x£©
¡àf(x)=
¡Ê(0£¬1)£»
¡àx¡ÊRʱ£¬f£¨x£©£¾0£¬
ÈÎÈ¡x1£¼x2£¬f£¨x2£©=f£¨x1+x2-x1£©=f£¨x1£©f£¨x2-x1£©£¬
¡ßx2-x1£¾0£¬
¡à0£¼f£¨x2-x1£©£¼1£¬
¡àf£¨x2£©£¼f£¨x1£©£»
¡àf£¨x£©ÔÚRÉÏÊǼõº¯Êý£®
£¨2£©¢Ùa1=f(0)=1£¬f(an+1)=
=f(2+an)£¬
ÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬
¹Ê{an}µÈ²îÊýÁУ¬¡àan=2n-1£¬
¢Úbn=
+
+¡+
£¬Ôòbn+1=
+
+¡+
£¬
bn+1-bn=
+
-
=
+
-
=
£¾0£¬{bn}ÊǵÝÔöÊýÁУ»
µ±n¡Ý2ʱ£¬{bn}min=b2=
+
=
+
=
£¬
¡à
£¾
(loga+1x-logax+1)£¬
¼´loga+1x-logax+1£¼1£¬
¡àloga+1x£¼logax£¬
¶øa£¾1£¬¡àx£¾1£¬
¹ÊxµÄȡֵ·¶Î§£¨1£¬+¡Þ£©£®
Áîx=-1£¬y=0£¬¡àf£¨-1£©=f£¨-1£©f£¨0£©£¬
¡ßf£¨-1£©£¾1£¬
¡àf£¨0£©=1£»
Èôx£¾0£¬Ôòf£¨x-x£©=f£¨0£©=f£¨x£©f£¨-x£©
¡àf(x)=
| 1 |
| f(-x) |
¡àx¡ÊRʱ£¬f£¨x£©£¾0£¬
ÈÎÈ¡x1£¼x2£¬f£¨x2£©=f£¨x1+x2-x1£©=f£¨x1£©f£¨x2-x1£©£¬
¡ßx2-x1£¾0£¬
¡à0£¼f£¨x2-x1£©£¼1£¬
¡àf£¨x2£©£¼f£¨x1£©£»
¡àf£¨x£©ÔÚRÉÏÊǼõº¯Êý£®
£¨2£©¢Ùa1=f(0)=1£¬f(an+1)=
| 1 |
| f(-2-an) |
ÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬
¹Ê{an}µÈ²îÊýÁУ¬¡àan=2n-1£¬
¢Úbn=
| 1 |
| an+1 |
| 1 |
| an+2 |
| 1 |
| a2n |
| 1 |
| an+2 |
| 1 |
| an+3 |
| 1 |
| a2n+2 |
bn+1-bn=
| 1 |
| a2n+1 |
| 1 |
| a2n+2 |
| 1 |
| an+1 |
=
| 1 |
| 4n+1 |
| 1 |
| 4n+3 |
| 1 |
| 2n+1 |
=
| 1 |
| (4n+1)(4n+3)(2n+1) |
µ±n¡Ý2ʱ£¬{bn}min=b2=
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| 5 |
| 1 |
| 7 |
| 12 |
| 35 |
¡à
| 12 |
| 35 |
| 12 |
| 35 |
¼´loga+1x-logax+1£¼1£¬
¡àloga+1x£¼logax£¬
¶øa£¾1£¬¡àx£¾1£¬
¹ÊxµÄȡֵ·¶Î§£¨1£¬+¡Þ£©£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éµÈ²îÊýÁе͍ÒåÓëͨÏ¿¼²éºã³ÉÁ¢ÎÊÌ⣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÏÂÁк¯ÊýÖУ¬ÒÔ
Ϊ×îСÕýÖÜÆÚµÄÊÇ£¨¡¡¡¡£©
| ¦Ð |
| 2 |
A¡¢y=sin
| ||
| B¡¢y=sinx | ||
| C¡¢y=sin2x | ||
| D¡¢y=sin4x |