ÌâÄ¿ÄÚÈÝ

É躯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬µ±x£¼0ʱf£¨x£©£¾1£¬ÇÒ¶ÔÈÎÒâµÄʵÊýx£¬y¡ÊR£¬ÓÐf£¨x+y£©=f£¨x£©f£¨y£©£®
£¨1£©Çóf£¨0£©£¬Åжϲ¢Ö¤Ã÷º¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©ÊýÁÐ{an}Âú×ãa1=f£¨0£©£¬ÇÒf(an+1)=
1
f(-2-an)
(n¡ÊN*)
£®
¢ÙÇó{an}µÄͨÏʽ£»
¢Úµ±a£¾1ʱ£¬²»µÈʽ
1
an+1
+
1
an+2
+¡­+
1
a2n
£¾
12
35
£¨loga+1x-logax+1£©¶Ô²»Ð¡ÓÚ2µÄÕýÕûÊýºã³ÉÁ¢£¬ÇóxµÄȡֵ·¶Î§£®
¿¼µã£ºÊýÁÐÓ뺯ÊýµÄ×ÛºÏ,º¯Êýµ¥µ÷ÐÔµÄÅжÏÓëÖ¤Ã÷,µÈ²îÊýÁеÄͨÏʽ,ÊýÁеÝÍÆÊ½
רÌ⣺ѹÖáÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©Áîx=-1£¬y=0£¬½áºÏf£¨-1£©£¾1£¬¿ÉÇóf£¨0£©£»ÀûÓõ¥µ÷ÐԵ͍Ò壬¿ÉÒÔÖ¤Ã÷f£¨x£©ÔÚRÉÏÊǼõº¯Êý£»
£¨2£©¢ÙÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬¹Ê{an}µÈ²îÊýÁУ¬¼´¿ÉÇó{an}µÄͨÏʽ£»
¢ÚÇó³ö×ó±ßµÄ×îСֵ£¬¿ÉµÃ
12
35
£¾
12
35
(loga+1x-logax+1)
£¬¼´loga+1x-logax+1£¼1£¬´Ó¶ø¿ÉÇóxµÄȡֵ·¶Î§£®
½â´ð£º ½â£º£¨1£©ÓÉx£¬y¡ÊR£¬f£¨x+y£©=f£¨x£©•f£¨y£©£¬ÇÒx£¼0ʱ£¬f£¨x£©£¾1£¬
Áîx=-1£¬y=0£¬¡àf£¨-1£©=f£¨-1£©f£¨0£©£¬
¡ßf£¨-1£©£¾1£¬
¡àf£¨0£©=1£»
Èôx£¾0£¬Ôòf£¨x-x£©=f£¨0£©=f£¨x£©f£¨-x£©
¡àf(x)=
1
f(-x)
¡Ê(0£¬1)
£»
¡àx¡ÊRʱ£¬f£¨x£©£¾0£¬
ÈÎÈ¡x1£¼x2£¬f£¨x2£©=f£¨x1+x2-x1£©=f£¨x1£©f£¨x2-x1£©£¬
¡ßx2-x1£¾0£¬
¡à0£¼f£¨x2-x1£©£¼1£¬
¡àf£¨x2£©£¼f£¨x1£©£»
¡àf£¨x£©ÔÚRÉÏÊǼõº¯Êý£®
£¨2£©¢Ùa1=f(0)=1£¬f(an+1)=
1
f(-2-an)
=f(2+an)
£¬
ÓÉf£¨x£©µ¥µ÷ÐÔ£¬¿ÉµÃan+1=an+2£¬
¹Ê{an}µÈ²îÊýÁУ¬¡àan=2n-1£¬
¢Úbn=
1
an+1
+
1
an+2
+¡­+
1
a2n
£¬Ôòbn+1=
1
an+2
+
1
an+3
+¡­+
1
a2n+2
£¬
bn+1-bn=
1
a2n+1
+
1
a2n+2
-
1
an+1

=
1
4n+1
+
1
4n+3
-
1
2n+1

=
1
(4n+1)(4n+3)(2n+1)
£¾0£¬{bn}
ÊǵÝÔöÊýÁУ»
µ±n¡Ý2ʱ£¬{bn}min=b2=
1
a3
+
1
a4
=
1
5
+
1
7
=
12
35
£¬
¡à
12
35
£¾
12
35
(loga+1x-logax+1)
£¬
¼´loga+1x-logax+1£¼1£¬
¡àloga+1x£¼logax£¬
¶øa£¾1£¬¡àx£¾1£¬
¹ÊxµÄȡֵ·¶Î§£¨1£¬+¡Þ£©£®
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éµÈ²îÊýÁе͍ÒåÓëͨÏ¿¼²éºã³ÉÁ¢ÎÊÌ⣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø