题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点是F(1,0),若椭圆短轴的两个三等分点M,N与F构成正三角形,求椭圆的方程.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据椭圆短轴的两个三等分点与一个焦点构成正三角形,得到椭圆短轴的三分之一的值,由此列式可以得到椭圆的半短轴的长,结合a2=b2+c2可以得到a2的值,所以椭圆方程可求
解答: 解:∵椭圆短轴的两个三等分点与一个焦点构成正三角形,且c=1,
2
3
3
=
1
3
×2b
,解得b=
3

∴a2=b2+c2=4.
∴椭圆的方程为
x2
4
+
y2
3
=1
点评:本题考查了椭圆的标准方程和简单几何性质,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网