题目内容
已知平面
,直线
,直线
,有下面四个命题:
(1)
∥![]()
![]()
(2) ![]()
![]()
![]()
![]()
∥![]()
(3)
∥![]()
![]()
![]()
![]()
(4) ![]()
![]()
∥![]()
其中正确的是( )
| A.(1)与(2) | B.(3)与(4) | C.(1)与(3) | D.(2)与(4) |
C
解析试题分析:解:对于①l⊥α,α∥β,m?β⇒l⊥m正确;对于②l⊥α,m?β,α⊥β⇒l∥m;l与m也可能相交或者异面;对于③l∥m,l⊥α⇒m⊥α,又因为m?β则α⊥β正确;对于④l⊥m,l⊥α则m可能在平面α内,也可能不在平面α内,所以不能得出α∥β;综上所述①③正确,故选C
考点:平面与平面之间的位置关系
点评:本题考查平面与平面之间的位置关系,考查空间想像能力及组织材料判断面面间位置关系的能力,属于基本题型.
练习册系列答案
相关题目
已知
、
、
是三条不同的直线,
、
、
是三个不同的平面,给出以下命题:
①若
,则
; ②若
,则
;③若
,
,则
;④若
,
,则
.
其中正确命题的序号是( )
| A.②④ | B.②③ | C.③④ | D.①③ |
设
为两条直线,
为两个平面,则下列结论成立的是( )
| A.若 | B.若 |
| C.若 | D.若 |
对于两条不相交的空间直线
和
,必定存在平面
,使得 ( )
| A. | B. | C. | D. |
已知m,n是两条不重合的直线,
是三个两两不重合的平面,给出下列四个命题:
①若m![]()
,m![]()
,则
∥
; ②若![]()
![]()
,![]()
![]()
则
∥![]()
③若m//
,n //
,m//n 则
//
④若m![]()
,m//
,则![]()
![]()
![]()
其中真命题是( )
| A.①和② | B.①和③ | C.③和④ | D.①和④ |
在空间四边形
中,
分别为
的中点,若
则
与
所成的角为
| A. | B. | C. | D. |