题目内容

16.已知△ABC的内角A,B,C所对的边分别为a,b,c,若向量$\overrightarrow{m}$=(a,b+c),$\overrightarrow{n}$=(cosC+$\sqrt{3}$sinC,-1)相互垂直.
(1)求角A的大小;
(2)若a=$\sqrt{3}$,求△ABC周长的最大值.

分析 (1)根据向量的数量积的运算得到acosC+a$\sqrt{3}$sinC=b+c,再根据正弦公式以及两角和差的正弦公式和诱导公式,即可求出答案;
(2)先根据正弦定理,得到b=2sinB,C=2sinC,表示出△ABC周长为a+b+c=$\sqrt{3}$+2sinB+2sinC,利用两角和差的正弦公式,以及正弦函数的图象和性质即可求出.

解答 解:(1)向量$\overrightarrow{m}$=(a,b+c),$\overrightarrow{n}$=(cosC+$\sqrt{3}$sinC,-1)相互垂直,
∴acosC+a$\sqrt{3}$sinC=b+c,
∴sinAcosC+$\sqrt{3}$sinAsinC=sin(A+C)+sinC,
∴$\sqrt{3}$sinAsinC=cosAsinC+sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA=cosA+1,
∴$\sqrt{3}$sinA-cosA=1,
即sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,
∴A-$\frac{π}{6}$=$\frac{π}{6}$,
∴A=$\frac{π}{3}$,
(2)∵a=$\sqrt{3}$,A=$\frac{π}{3}$,由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=2,
∴b=2sinB,C=2sinC,
∴△ABC周长为a+b+c=$\sqrt{3}$+2sinB+2sinC=$\sqrt{3}$+2sinB+2sin($\frac{2π}{3}$-B)=$\sqrt{3}$+2sinB+$\sqrt{3}$cosB+sinB=$\sqrt{3}$+3sinB+$\sqrt{3}$cosB=$\sqrt{3}$+2$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵0<B<$\frac{2π}{3}$,
∴$\frac{π}{3}$<B+$\frac{π}{6}$<$\frac{5π}{6}$,
当B+$\frac{π}{6}$=$\frac{π}{2}$时,即B=$\frac{π}{3}$时,周长有最大值,
即为$\sqrt{3}$+2$\sqrt{3}$=3$\sqrt{3}$.

点评 本题考查了向量的数量积的运算和正弦定理,两角和差的正弦公式,以及三角函数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网