题目内容

1.已知等比数列{an}的公比q=$\frac{1}{3}$,并且a1+a3+a5+…+a99=60,那么a1+a2+a3+…+a100等于$\frac{60({3}^{100}-1)}{({3}^{66}-1)•{3}^{34}}$.

分析 利用等比数列的前n项和公式即可得出.

解答 解:∵等比数列{an}的公比q=$\frac{1}{3}$,并且a1+a3+a5+…+a99=60,
∴$\frac{{a}_{1}(1-\frac{1}{{9}^{33}})}{1-\frac{1}{9}}$=60.
那么a1+a2+a3+…+a100=$\frac{{a}_{1}(1-\frac{1}{{3}^{100}})}{1-\frac{1}{3}}$=60×$\frac{1-\frac{1}{{3}^{100}}}{1-\frac{1}{{3}^{66}}}$=$\frac{60({3}^{100}-1)}{({3}^{66}-1)•{3}^{34}}$.
故答案为:$\frac{60({3}^{100}-1)}{({3}^{66}-1)•{3}^{34}}$.

点评 本题考查了等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网