题目内容

3.如图(1),五边形ABCDE中,ED=EA,AB∥CD,CD=2AB,∠EDC=150°.如图(2),将△EAD沿AD折到△PAD的位置,得到四棱锥P-ABCD.点M为线段PC的中点,且BM⊥平面PCD.

(1)求证:平面PAD⊥平面PCD;
(2)若直线PC与AB所成角的正切值为$\frac{1}{2}$,设AB=1,求四棱锥P-ABCD的体积.

分析 (1)取PD的中点N,连接AN,MN,由三角形中位线定理可得及已知可得四边形ABMN为平行四边形,得AN∥BM,在由已知BM⊥平面PCD,可得AN⊥平面PCD,由面面垂直的判定可得平面PAD⊥平面PCD;
(2)取AD的中点O,连接PO,由AN⊥平面PCD,可得AN⊥PD,AN⊥CD.再由已知可得△PAD为等边三角形,得到CD⊥AD,则平面PAD⊥平面ABCD.再由线面垂直的性质可得PO是锥P-ABCD的高.由已知直线PC与AB所成角的正切值为$\frac{1}{2}$,AB=1求得CD=2,PA=AD=AB=1,再由棱锥体积公式求得四棱锥P-ABCD的体积.

解答 (1)证明:取PD的中点N,连接AN,MN,则$MN∥CD,MN=\frac{1}{2}CD$,
又$AB∥CD,AB=\frac{1}{2}CD$,∴MN∥AB,MN=AB,
则四边形ABMN为平行四边形,∴AN∥BM,
又BM⊥平面PCD,∴AN⊥平面PCD,
∵AN⊆面PCD,
∴平面PAD⊥平面PCD;
(2)解:取AD的中点O,连接PO,
∵AN⊥平面PCD,
∴AN⊥PD,AN⊥CD.
由ED=EA,即PD=PA及N为PD的中点,可得△PAD为等边三角形,
∴∠PDA=60°,
又∠EDC=150°,∴∠CDA=90°,则CD⊥AD,
∴CD⊥平面PAD,CD?平面ABCD,
∴平面PAD⊥平面ABCD.
∵PO⊥AD,面PAD∩面ABCD=AD,PO?面PAD,
∴PO⊥面ABCD,
PO是锥P-ABCD的高.
∵AB∥CD,∴∠PCD为直线PC与AB所成的角,
由(1)可得∠PDC=90°,∴$tan∠PCD=\frac{PD}{CD}=\frac{1}{2}$,得CD=2PD,
由AB=1,可知CD=2,PA=AD=AB=1,
∴PO=$\sqrt{1-(\frac{1}{2})^{2}}=\frac{\sqrt{3}}{2}$,
${S}_{ABCD}=\frac{1}{2}(1+2)×2=3$.
则${V}_{P-ABCD}=\frac{1}{3}•{S}_{ABCD}•PO$=$\frac{1}{3}×3×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了多面体体积的求法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网