题目内容

4.定义在R上的奇函数f(x)满足f(x)=-f(x+2),且在[1,2]上是减函数,则(  )
A.$f(\frac{1}{2})<f(-\frac{3}{2})<f(3)$B.$f(3)<f(-\frac{3}{2})<f(\frac{1}{2})$C.$f(\frac{1}{2})<f(3)<f(-\frac{3}{2})$D.$f(3)<f(\frac{1}{2})<f(-\frac{3}{2})$

分析 在R上的奇函数f(x)满足f(x)=-f(x+2),可得f(x+2)=-f(x)=f(-x),f(3)=-f(1),$f(-\frac{3}{2})$=-$f(\frac{3}{2})$,$f(\frac{1}{2})$=$f(\frac{3}{2})$.由f(x)在在[1,2]上是减函数,$f(\frac{3}{2})>f$(2)=-f(0)=0,即可得出.

解答 解:∵在R上的奇函数f(x)满足f(x)=-f(x+2),∴f(x+2)=-f(x)=f(-x),
∴f(3)=-f(1),$f(-\frac{3}{2})$=-$f(\frac{3}{2})$,$f(\frac{1}{2})$=$f(\frac{3}{2})$.
∵f(x)在在[1,2]上是减函数,$f(\frac{3}{2})>f$(2)=-f(0)=0,
∴$f(1)>f(\frac{3}{2})$,∴-f(1)<-$f(\frac{3}{2})$<$f(\frac{3}{2})$.
∴f(3)<$f(-\frac{3}{2})$<$f(\frac{1}{2})$.
故选:B.

点评 本题考查了函数的奇偶性、单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网