题目内容

已知椭圆具有如下性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,则kPM与kPN之积是与点P位置无关的定值.试写出双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)具有的类似的性质,并加以证明.
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:设点M的坐标为(m,n),则点N的坐标为(-m,-n),且
m2
a2
-
n2
b2
=1
,又设点P的坐标为(x,y),表示出直线PM和PN的斜率,求得两直线斜率乘积的表达式,把y和x的表达式代入发现结果与p无关.
解答: 解:双曲线的类似的性质为:若M,N是双曲线
x2
a2
-
y2
b2
=1上关于原点对称的两个点,点P是双曲线上的任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,kPM与kPN之积是与点P位置无关的定值.
下面给出证明:
设点M的坐标为(m,n),则点N的坐标为(-m,-n),且
m2
a2
-
n2
b2
=1

又设点P的坐标为(x,y),由kPM=
y-n
x-m
,kPN=
y+n
x+m
得kPM•kPN=
y-n
x-m
y+n
x+m
=
y2-n2
x2-m2
,①
将y2=
b2
a2
x2-b2,n2=
b2
a2
m2-b2代入①式,得kPM•kPN=
b2
a2
(定值).
点评:本题主要考查了双曲线的性质,考查了学生综合分析问题和解决问题的能力,正确计算是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网