题目内容

如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=
2

BD⊥CD,将其沿对角线BD折成四面体A-BCD,使平面ABD⊥平面BCD,则下列说法中不正确的是(  )
A、平面ACD⊥平面ABD
B、AB⊥CD
C、平面ABC⊥平面ACD
D、AD⊥平面ABC
考点:平面与平面垂直的判定
专题:证明题,空间位置关系与距离
分析:对四个结论分别加以判断,即可得出结论.
解答: 解:对于A,∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BD⊥CD,
∴CD⊥平面ABD,∴平面ACD⊥平面ABD,即A正确;
对于B,∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB?平面ABD,AB⊥BD,
∴AB⊥平面BCD,又CD?平面BCD,∴AB⊥CD,即B正确;
对于C,∵AB⊥AD,AB⊥CD,AD∩CD=D,∴AB⊥平面ACD,∴平面ABC⊥平面ACD,即C正确;
对于D,若AD⊥平面ABC,则AD⊥AC,与CD⊥AD矛盾,
故选:D.
点评:本题考查平面与平面垂直的判定,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网