题目内容

已知偶函数f(x)在[0,+∞)上为单调递减,则满足不等式f(2x-1)>f(3)的x的取值范围是(  )
A、[-1,2]
B、[-1,+∞)
C、(1,2)
D、(-1,2)
考点:函数奇偶性的性质,奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据偶函数的性质,可知f(x)=f(|x|),将不等式f(2x-1)>f(3)转化为:f(|2x-1|)>f(3),再运用f(x)在区间[0,+∞)上单调递减,去掉“f”,列出关于x的不等式,求解即可得到x的取值范围.
解答: 解:∵f(x)为偶函数,∴f(x)=f(|x|),
∴f(2x-1)=f(|2x-1|),
则不等式f(2x-1)>f(3)转化为:f(|2x-1|)>f(3),
∵偶函数f(x)在[0,+∞)上为单调递减,
∴|2x-1|<3,解得-1<x<2,
则不等式的解集是:(-1,2),
故选:D.
点评:本题考查利用函数的奇偶性和单调性解不等式,解题的关键是将不等式进行合理的转化,然后利用单调性去掉“f”.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网